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Abstract—Achieving athletic loco-manipulation on robots re-
quires moving beyond traditional tracking rewards—which sim-
ply guide the robot along a reference trajectory—to task rewards
that drive truly dynamic, goal-oriented behaviors. Commands
such as “throw the ball as far as you can” or “lift the weight as
quickly as possible” compel the robot to exhibit the agility and
power inherent in athletic performance. However, training solely
with task rewards introduces two major challenges: these rewards
are prone to exploitation (reward hacking), and the exploration
process can lack sufficient direction. To address these issues, we
propose a two-stage training pipeline. First, we introduce the Un-
supervised Actuator Net (UAN), which leverages real-world data
to bridge the sim-to-real gap for complex actuation mechanisms
without requiring access to torque sensing. UAN mitigates reward
hacking by ensuring that the learned behaviors remain robust
and transferable. Second, we use a pre-training and fine-tuning
strategy that leverages reference trajectories as initial hints to
guide exploration. With these innovations, our robot athlete
learns to lift, throw, and drag with remarkable fidelity from
simulation to reality.

I. INTRODUCTION

General whole-body control comes naturally to animals
after years of evolution, yet it remains a long-standing chal-
lenge in robotics. Fluid whole-body motion requires balancing
multiple competing tasks and constraints that depend on both
the robot’s morphology and its environment [40]. Recent
work [6l 32]] demonstrates that sim-to-real reinforcement learn-
ing (RL), using methods such as Proximal Policy Optimization
(PPO) [37], is a promising paradigm for learning these behav-
iors by leveraging parallel simulations [36].

For dynamic, goal-oriented loco-manipulation, it is natural
to train robots with task rewards—commands like “throw the
ball as far as possible” or “lift the weight as quickly as
possible” that drive athletic behaviors. However, these task
rewards pose two major challenges: (i) they are prone to
reward hacking, where the policy exploits imperfections in the
simulation, and (ii) the exploration process can lack sufficient
guidance. To circumvent these issues, many works on sim-
to-real transfer instead train whole-body controllers (WBCs)
to track dense reference motions [4, 6, [12, 21, [32]. Dense
tracking objectives provide strong regularization by constrain-
ing the policy to adhere to a reference trajectory—thereby
reducing reward hacking—and they offer a structured path for
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Fig. 1: Sim-to-real transfer of athletic loco-manipulation.
We reduce the sim-to-real gap for a quadruped manipulator
by learning a corrective model for the simulated actua-
tor dynamics based on real-world data, formulated as an
unsupervised actuator net (UAN). Policies trained with the
corrected simulator exhibit improved sim-to-real transfer and
push the limits of the robot’s physical capabilities in athletic
tasks involving whole-body coordination. Videos of the robot’s
behaviors are available at https://uan.csail.mit.edu/.

exploration. However, this strategy relies on defining high-
quality reference commands a priori, which in turn demands
access to high-quality reference data. For robots with non-
human morphologies like legged manipulators, obtaining such
data is particularly challenging, and the resulting reference
commands may not capture the optimal, athletic strategies that
a policy might otherwise discover.

To fully harness the benefits of task rewards, it is crucial
to ensure that the simulation faithfully replicates real-world
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dynamics. Inaccurate simulation models allow policies to
exploit imperfections, leading to reward hacking, particularly
so when the reward is underspecified. Although techniques
like domain randomization [46l 47, 49] and online system
identification [14} [17} 122 27} 29, 33]] address this by sampling
over parameter distributions, they rely on a priori assumptions
that may not fully capture the complex dynamics of real hard-
ware. For instance, harmonic drive actuators exhibit non-linear
friction, hysteresis, and lag—behaviors that render traditional
proxies like motor current unreliable for torque estimation.

A promising alternative is to enhance the simulation’s
physics model directly with real-world data, focusing on
accurately modeling the actuator dynamics. With this moti-
vation, we introduce the Unsupervised Actuator Net (UAN), a
framework for learning corrective actuator models without the
need for torque sensors. UAN is trained using reinforcement
learning to predict corrective torques, 67 = wyan(e), by
minimizing discrepancies between simulated and real-world
joint encoder measurements. In doing so, UAN effectively
bridges the sim-to-real gap even for robots with complex
transmission mechanisms and noisy or unavailable torque
measurements.

Building on this enhanced simulation environment, we
address the challenge of guided exploration for athletic be-
haviors. Rather than enforcing strict adherence to a reference
trajectory, we propose treating it as a hint to guide exploration.
In our approach, a WBC is first pre-trained on random base
velocities and end-effector pose commands to establish a
strong motion prior. Then, to learn a new athletic behavior, we
initialize the controller with a reference trajectory and fine-
tune it using a task-specific reward—allowing the policy to
depart from the reference when beneficial.

In summary, our paper presents an easy-fo-use training
pipeline for whole-body athletic behaviors that reliably transfer
to reality. First, we employ the Unsupervised Actuator Net
(UAN) to calibrate actuator dynamics and mitigate reward
hacking, ensuring our simulator accurately reflects real-world
physics. With this improved simulation environment, we then
pre-train a whole-body controller (WBC) to establish fun-
damental motion skills and fine-tune it with task-specific
rewards—using a reference trajectory merely as a hint to guide
exploration. This integrated approach enables our robot to
perform dynamic tasks such as throwing, lifting, and dragging
with remarkable fidelity.

II. METHOD

Our training pipeline (see Figure [2)) is separated into two
phases: 1) real-to-sim calibration (Section and 2) WBC
training (Sections and [[I-C). The real-to-sim calibration
phase involves collecting data on the real robot and training
a UAN to close the sim-to-real gap for non-ideal actuation
mechanisms. Similar to past work [7, 21 131} 42], our WBC
training is split into two distinct sub-phases: pre-training (Sec-
tion[[I-B) and fine-tuning (Section[[I-C). After pre-training, the
policy can track reference trajectories if provided as a sequence
of base velocity and end effector pose commands. During

the fine-tuning phase, the policy observes a reference task
trajectory. This helps warm start exploration when learning a
new task because the policy can simply track these commands
to achieve reasonable task performance. Through training with
the task reward itself rather than a tracking reward, the policy
learns how to depart from the reference trajectory to achieve
higher task performance. Our simulation environments for the
pre-training and fine-tuning phases rely on the same strate-
gies for sim-to-real transfer, including domain randomization
(Section and a UAN (Section [[TI-A).

Our experiments consider a Unitree B2 quadruped with
a modified Unitree Z1 Pro arm mounted on its back. The
quadruped is 65 cm tall when standing and weighs 60 kg, while
the arm is 74 cm fully extended and weighs 6.8 kg. The system
has 19 actuated joints: 3 for each leg, 6 for the arm, and 1 for
the gripper.

A. Unsupervised Actuator Net

Some actuators are challenging to model in simulation, es-
pecially when they have complex transmission mechanisms. In
such cases, standard domain randomization and online system
identification techniques may be insufficient, and instead, it
is preferable to learn to model the actuator directly from
hardware data. Previous approaches rely on output torque
sensing [[13[], which is still uncommon in consumer hardware,
to learn how to predict the motor’s torque. Alternatively, we
propose a method for matching the transition dynamics of the
actuator such that

r}l_in”freal(saT) _fsim(svT)”' (1)
To influence the simulator dynamics, fy,, we learn a resid-
ual model, Tyan(e, that observes a history of position and
velocity errors, e, and outputs a corrective torque, 67, for the
simulator such that

ﬂI—glAIIf\[I Hfreal (S, T) - fsim (Sa T + TUAN (e)) || 2)

The corrective torques needed to minimize the transition error
are unlabeled, so we parametrize Tyan as a neural network
and train it with RL.

1) Architecture and observation space: The network is
designed as a 2-layer MLP with layer sizes [128, 128] and
ELU activations. It is executed at every simulation time step
(5 ms). Assuming each arm joint is identical, a single UAN
is shared across all of the arm’s actuators, with each actuator
being processed independently by the shared network [13].
We constrain the observation space to include a history of the
past 20 (equivalent to 100 ms) position and velocity errors
for each relevant actuator. These design choices help prevent
overfitting to other aspects of the training data, such as inertial
coupling. Also, sharing the data across actuators improves data
efficiency. For example, the actuator net is trained on data with
various loads, as actuators closer to the robot’s base generally
experience more load than those near the gripper.
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Fig. 2: Unsupervised Actuator Network (UAN) approach for real-to-sim-to-real. Our training pipeline involves three steps:
1) Train a UAN to close the sim-to-real gap for actuators with complex transmission mechanisms by mapping a history of joint
position and velocity errors, e;, to corrective torques, 97, 2) Pre-train a WBC using random motion references (base velocity
and EE pose), then and fine-tune it on an athletic task reward with the UAN in loop, and 3) Deploy. During the fine-tuning
phase, the WBC initially tracks the task-specific reference, and then gradually learns to depart from the reference to maximize

task performance.

2) Data collection: We collect data on the real hardware
to construct a dataset of transitions {(s¢, T+, S¢11); 11 from
each actuator. Our intention during data collection was to
sufficiently cover the state space to avoid overfitting. Thus,
we opted not to use policy data, and instead, collected data
with three types of action sequences: 1) square waves, 2) sine
waves, and 3) gaussian noise. For the square and sine wave
data, we passed torque commands to one actuator at a time,
while keeping the rest of the actuators at a fixed position
target. We swept 12 different combinations of amplitude and
frequency for each wave, resulting in about 50 seconds of
data for each actuator. For the gaussian noise data, we passed
torque commands to all the robot’s joints simultaneously. We
sampled a new action from a gaussian distribution every 5 to
400 ms for about 5 minutes.

3) Training Environment: We designed the training envi-
ronment in Isaac Sim [30] with 4096 parallel environments.
We train policies with the RSL-RL implementation [36] of
PPO [37]] with default hyperparameters, minus a few modifi-
cations (see Appendix [A] for the full list of learning algorithm
hyperparameters). Following Radosavovic et al. [34], we apply
a separate, fixed learning rate to the critic while using an
adaptive learning rate for the actor. Additionally, we divide
the data of each epoch into four mini-batches for the actor
while using the entire batch for the critic, as we found that
larger batch sizes produce more stable gradients and result in
lower value function loss.

4) Task Design: For each environment at each timestep,
we uniformly sample a real-world transition, (st T+, St+1)ks
and set the state of the simulator to match s; and the initial
torque to 7. After policy inference, we modify the torque by
adding the correction, §7;, and then step the simulator. We
then compute the reward as

sim—to—real
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where 5™t~ a4img to minimize the difference between

the real joint position and the simulated joint position, and

pymoothness hiages exploration to gradual deviations. For a
complete list of reward terms, please refer to Appendix [A]

Each training episode consists of a 20 s rollout executing the
torque sequence from the hardware data from 7 to §7;120s.
Through training on rollouts, the actuator net learns to remain
stable across many simulation time steps.

B. Whole-body Controller Pre-training

Before training on task-specific behaviors, we pre-train
the WBC to learn foundational trajectory-tracking skills. Our
training scheme builds upon the method proposed in [6] by
incorporating a strategy for learning to track an EE orientation
command. As in Section [[[-FA3] we designed the training
environment in Isaac Sim with 4096 parallel environments and
trained the policies with PPO [36} [37]] (using separate learning
rates and batch sizes for the actor and critic).

1) Policy Architecture: The WBC is a control policy,
a; = mg(0¢—p.t), where the action at time ¢, a;, is a vector
of position targets for each of the robot’s joints and o;_r.; is
an observation history of length ' = 10 timesteps (200 ms).
We parameterize 7y as a 3-layer multi-layer perceptron (MLP)
with layer sizes [512, 512, 512] and ELU activations. The value
function approximator network has the same architecture but
does not share weights with the policy.

2) Observation Space: The policy’s observation space con-
sists of proprioceptive readings from the robot’s onboard sen-
sors, including the gravity vector projected in the robot’s body
frame g, a base velocity command vfmd, an end effector pose
command pgmd, the joint positions g, the joint velocities g, the
previous actions a;_1, and a timing variable w; = sin(27 ft)
with f = 2.2 Hz corresponding to the gait cycle frequency.
Additionally, the observation includes a d-dimensional task
embedding vector z; (set to zero during pre-training).

3) Sim-to-Real Considerations: Our approach for bridging
the sim-to-real gap uses a combination of domain random-
ization (DR) and real-to-sim calibration. To learn locomotion
behaviors robust to terrain variations, we randomize terrain



roughness, friction, and restitution. To account for inaccuracies
in the robot’s URDF, we randomize the mass and center of
mass position of each of the robot’s links. We also randomize
the PD gains and stall torques for each actuator in the robot’s
legs, and the policy lag length to learn robustness to latencies
observed on hardware. To encourage learning recovery behav-
iors, we randomize the initial joint and body states of the robot
and periodically perturb it with external forces and torques at
the base, hips, feet, and end-effector, following the approach
proposed in [8]]. The DR ranges used for both pre-training and
fine-tuning are provided in Appendix [A]

Inspired by [43], we clip the commanded motor torques T
such that

T 2 —Tmax <1 + max (min ( - 9 ,0> ,—1)) , @
qmax
T < Tmax (1—max <min (qq ,1),0)). (®)]

where T1,.x and qmax are the maximum torques and velocities
of the actuators, respectively. This clipping strategy enforces a
physical motor constraint by ensuring that torque commands
do not demand power beyond the motor’s maximum output
capacity. Furthermore, we clip the arm torques a second time
to satisfy the constraint

171 Td] < Puax, (6)

where Pp,,x is the maximum total power of the arm joints,
because we found experimentally this helps prevent the arm
from entering a power protect state enforced by the robot’s
manufacturer.

Since typical DR strategies were insufficient for athletic
behaviors in the arm (which uses harmonic drives), we in-
corporate the UAN (Section [[I-A) for the arm actuators.
Therefore, no DR is applied to arm joint properties.

4) Task Specification: The pre-training task for the WBC
is to track a desired base velocity and EE pose. The velocity
command, v§™ = [vg74, 0em9, W] consists of a desired
forward velocity vl a desired lateral velocity v;?gd, and a
desired yaw-rate wgf‘gd. We command the EE pose in a yaw-
rotated frame aligned with the robot’s center of mass at a fixed
height above the terrain. The choice of frame encourages the
robot to coordinate with its legs to expand its workspace. The
EE command p{™ = [pgh, ofipY] comprises a cartesian
position pPE and orientation oF® (provided as the first two
columns of a rotation matrix).

5) Reward Function: The reward function is split as r; =
pirack 4 paux Cywhere ritack include tracking terms (EE pose,
base velocity) and gait terms, while r"* includes regular-
ization and smoothing terms. The EE tracking term rewards
minimizing the distance between four key points, where one
key point is positioned at the frame’s origin, and the others
are positioned along each axis of the frame. Full details are
provided in Appendix [A]

6) Command Sampling Scheme: We adopt the approach
first proposed in [6] to sample commands during training.
We sample a new base velocity command and a new goal

cmd

Fig. 3: Unitree Z1 Pro arm. This arm’s harmonic actuators
behave substantially differently from the quasi-direct-drive
motors common in small legged robots. This image also
shows the reinforcements we designed to ensure that the limit
on athleticism comes from actuation rather than the linkage
structural integrity.

end effector pose every 7 seconds of simulation time. Upon
sampling, the command is linearly interpolated (over 2 to 5
seconds) from the previous command. While this sampling
scheme suffices for foundational loco-manipulation skills, it
may be too smooth for highly agile motions — this motivates
our task-specific fine-tuning (Section [[I-C).

C. Task-Specific Finetuning

After pre-training, the policy can track reference trajectories,
but struggles on high-acceleration tasks. To address this, we
fine-tune the policy directly with task rewards. The same WBC
base policy weights can be reused for multiple task policies,
thus avoiding repeated pre-training.

1) Initialization: The policy weights are initialized to those
learned during pre-training. To avoid policy collapse, we set
a low initial learning rate (1 x 10~°) for the actor and retain
the standard deviation from pre-training. Additionally, we set
the entropy coefficient in PPO to zero during fine-tuning to
improve training stability.

2) Reference trajectory and task embedding: During fine-
tuning, the policy receives a task-specific reference trajectory
and a one-hot task embedding to inform which phase of
the task (e.g., set-up, execute, settle) is active. We hand-
designed the reference trajectories through joint interpolation
and forward kinematics, but they could also come from an
expert policy or human demonstration.

3) Fine-tuning with task reward: The environment for fine-
tuning phase extends that of pre-training (same DR ranges,
external pushes, etc.). The reward becomes ri + r#"*, where
ri is task-specific. Initially, the policy tracks the reference,
aiding exploration; later, it learns to deviate to maximize task
performance.

III. EXPERIMENTAL SETUP

We chose the Unitree B2 with Unitree Z1 Pro arm as
our hardware platform, and we consider three athletic tasks:
throwing, weight lifting, and sled pulling (see Section [[V-C).
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Structural upgrades to the arm were custom designed and
fabricated to withstand the high loads during athletic behaviors
(see Section [[II-Al).

Following our UAN training (Section [[I-A)), we pre-trained
a WBC (Section and then fine-tuned policies for each
task (Section [[I-C)). Ablations comparing our method with
alternatives are described in Section [V-Al and Section

A. Arm Modifications

During development, the Unitree Z1 Pro arm experienced
structural failures at links 2 and 4, with minor deformations
at link 5. The damage resulted from the highly dynamic
movements in the athletic experiments, which applied loads
to the links that exerted excessive stress and strain on the
links exceeding the material’s yield strength. Modifications
were made to reinforce links 2, 3, 4, and 5 by adding supports
at the joints. This prevents loads from being transferred solely
through the motors which are cantilevered. A mass-efficient
aluminum square tube was used for link 2, which experiences
the highest stress of all the links. Idler bearings are used to
apply support at the motor outputs without restricting their
movement. In the URDEF, link masses, centers of mass, and
inertias were updated based on CAD calculations and the
parallel axis theorem. Figure [3| shows the reinforced arm.

IV. EXPERIMENTAL RESULTS

In this section, we report ablations that identify the contri-
bution of key system components and present results for the
athletic tasks. Supplemental videos are provided on the project
website: https://uan.csail.mit.edu/.

Our experiments address the following questions:

1) Does our unsupervised actuator net reduce the sim-to-
real gap and improve transfer?

2) What are the benefits of our two-stage pre-training and
fine-tuning pipeline relative to alternatives?

3) Does our approach enable sim-to-real transfer of athletic
whole-body control tasks?

A. Comparing System Identification Approaches

We compare several methods for modeling the actuator
dynamics of the Unitree Z1 Pro arm in Isaac Sim. In particular,
we consider:

1) Default: The baseline simulator with no additional
modifications.

2) DR: The simulator augmented with domain random-
ization (randomizing PD gains, friction, and armature
parameters).

3) ROA: A domain randomization baseline enhanced with
an online system identification module via Regularized
Online Adaptation [6].

4) Actuator Net: A supervised actuator network fol-
lowing Hwangbo et al. [13] where torque labels are
estimated from the motor current. (Note that these labels
do not capture the nonlinear effects introduced by the
harmonic reducers.)

5) CEM: A method in which friction, frictional damping,
and armature parameters are optimized using the cross-
entropy method to minimize the mean-square joint po-
sition error between simulation and hardware.

6) UAN: Our proposed unsupervised actuator network that
learns corrective torques without requiring torque su-
pervision, thereby capturing both lag and nonlinearities
from harmonic reduction.

We first evaluate the modeling accuracy of these approaches
by reporting the mean-square joint position error on both the
training data and on an unseen test trajectory (see Figure [7)).
Our results show that the UAN method achieves the best
fit, suggesting excellent generalization. For example, detailed
windows of simulator rollouts for a single arm joint are
provided in Figures [7b| (training data) and (test data);


https://uan.csail.mit.edu/

Distance Thrown (m) 1

Throw Release Speed (m/s) T

Peak Leg Power (kW) |

—
15 ~1— . E3 15 | + |
].0 [ _I_ _I_ 1 _}
10 - & e 10 |- |
5 [ |
o a 5 N
No-Fine-Tuning No-Pre-Training No-E2E Ours

Fig. 5: End-to-end fine-tuning from a pre-trained WBC leads to the best task performance. Throwing evaluation metrics
across 100 simulated throws for four policies: Our fine-tuned WBC (Ours) achieves the longest throw distance with lower
peak leg power as compared to a throwing policy trained from scratch (No-Pre-Training) or a high-level policy for a
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a much shorter distance.

additional results for the other arm joints are included in the
appendix (Figures [§] and [9). In our observations, the CEM
method helps prevent overshoot (by effectively slowing the
arm to match the lower joint velocities seen on hardware).
Actuator Net can improve over the baseline by capturing
lag effects, but it diverged on the 5min rollouts on the
training data. However, only UAN achieves a tight fit to the
training data, thanks to its capacity to model the nonlinear
effects introduced by the harmonic reducers. A shown by
Figure [/l UAN can even accurately capture the arm’s response
to Gaussian noise control input, which is commonly used
for exploration in reinforcement learning but represents a
challenging regime for accurate simulation where the baseline
methods degrade substantially.

To further assess these system identification methods in
a task context, we trained arm-only throwing policies in
simulation augmented with each approach and deployed them
on hardware. The average throwing performance in simulation
and reality is presented in Figure 4| In simulation, although
the Actuator Net and CEM produced a promising throw,
its behavior did not transfer as well to hardware. In contrast,
the UAN policy achieved the farthest throws on hardware with
the smallest sim-to-real gap. Meanwhile, the Default, DR,
and ROA policies produced unstable behaviors—the Default
policy, for instance, strayed excessively and failed to throw the
ball at all.

B. Finetuning Foundational WBC

We compare four throwing policies to assess the impact of
our pre-training and fine-tuning approaches:

1) No-Fine-Tuning: a pre-trained WBC that tracks a
throwing reference trajectory.

2) No-Pre-Training: a throwing policy trained from
scratch.

3) No—EZ2E: a high-level policy that outputs commands for
a frozen pre-trained WBC.

4) Ours: our method that initializes with the pre-trained
WBC and fine-tunes with RL.

All methods observe a hand-designed throwing reference tra-
jectory.

Figure [I] presents the performance of each throwing policy
across 100 simulated throws. No—-Fine-Tuning success-
fully throws the ball by tracking the reference, but its per-
formance is sub-optimal. However, the strong performance of
No-E2E shows that the WBC’s performance can be improved
by providing a better reference trajectory. Still, the No-E2E
policy does not perform to the maximum capability of the
hardware. Through RL finetuning with the task reward, Ours
can learn to throw farther while using a reduced peak power
output in its leg motors. While No-Pre-Training could
theoretically push the capabilities of the hardware, in practice,
it struggles to do so due to exploration challenges. We found
that No-Pre-Training achieved similar throwing perfor-
mance to No—-E2E, despite hitting a larger peak power output
in its legs.

C. Hardware Results

1) Ball throwing: The task objective is to throw a 100 g
ball as far as possible. Because grasping and releasing a
ball directly is challenging for our gripper, a small bucket
is attached to the robot’s EE. The policy leans back prior
to throwing, then pushes with its hind legs while swinging
its arm forward to launch the ball. Figure [6] shows side-by-
side snapshots from simulation and hardware. On hardware,
the ball was thrown approximately 20 m, with the real robot



throwing slightly further than in simulation — possibly due to
inaccuracies in the ball-bucket contact modeling.

2) Dumbbell snatch: The goal is to lift a dumbbell with the
EE and hold it stably. The dumbbell is simulated by modifying
the gripper’s mass. The robot first lowers its EE to the ground,
at which point the mass is added to its gripper. Then, its
commanded to lift the weight in the air. When lifting, the
robot is rewarded for maximizing the z position of its EE.

When training the lifting policy, we randomized the mass
of the robot’s EE from O to 10 kg. At convergence, the policy
could consistently lift weights up to 8kg, but struggled to
stabilize heavier weights above its body. Since the robot’s
arm is much weaker than the legs, the policy learns to pitch
its base backwards to swing the weight upwards into the air.
Figure [6] includes snapshots of the learned lifting behavior
in simulation and reality. During hardware experiments, we
secured the dumbbells inside the robot’s gripper with a belt
to prevent it from slipping out of the robot’s grasp, We found
the Z1 arm could not lift even a 5 1b. dumbbell to an upright
position through simple joint interpolation. We first verified
the whole-body policy could lift a 5 1b. dumbbell and then
progressed to a 10 1b. dumbbell. In both experiments, the robot
lifted the weight above its base and maintained it there stably
for over 5s.

3) Sled pull: In this task, the robot pulls a heavy sled
attached by a rope to its EE. The sled is modeled as avir-
tual, 3-dimensional mass-spring-damper system. The robot
is rewarded for tracking a backward base velocity while
minimizing lateral drift. The policy learns to adopt a low
stance to maintain balance and extend its arm to avoid applying
unnecessary torques to the arm’s actuators. In simulation, poli-
cies successfully pulled weights up to 150kg. On hardware,
the robot pulled a cart resisting a friction force of 113 N over
10 meters; a heavier cart (requiring 230 N) was only pulled
about 0.5 meters.

V. LIMITATIONS

Our fine-tuning approach requires a task reference trajec-
tory, which may not be available for all robot morphologies or
tasks. It also necessitates per-task engineering of the training
environment (reward functions, object simulation, etc.). Fu-
ture work might employ generative models to automatically
synthesize task references. Additionally, our unsupervised ac-
tuator net focuses on the arm actuators. Extending real-to-sim
calibration to other robot subsystems and modeling structural
integrity are promising future directions.

VI. RELATED WORK
A. Whole-Body Control

Walking robots with arms present a formidable challenge for
control due to their many degrees of freedom and complex
dynamics. A typical paradigm is to implement a WBC that
optimizes actuation to achieve control objectives considering
a model of the robot’s kinematics and dynamics [41]. WBC
approaches based on offline trajectory optimization or online

(a) Ball Throw

(c) Sled Pull

Fig. 6: Real and simulated snapshots of athletic tasks. Vi-
sualizing simulated and real rollouts of whole-body behaviors.
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training. We rolled out three real-world joint trajectories: square & sine waves at each joint, Gaussian noise across all the
joints, and a throw. Square waves, sine waves, and gaussian noise were seen during training, while the throw was not. We
found that Actuator-Net error remains bounded on the 5s throw trajectory but diverges when rolling out the 5 min training
trajectories, while the UAN learned to remain accurate across long rollouts through RL training.

optimization with reduced-order models have achieved con-
siderable success in dynamic walking and manipulation [1}
3| 28l 144]. Recently, reinforcement learning in simulation has
enabled whole-body control that can naturally handle model
uncertainty, e.g. uncertain terrain and robot properties [6]. In
the case of reinforcement learning-based whole-body control,
the controller is a neural network that is commanded with
an input reference position [4} 6], force [32]], or whole-body
pose [5 [12] 23| 24] and outputs joint-space actions.

It is common to teleoperate legged-armed robots by parsing
a reference trajectory from a human’s movements in real-time
and tracking it with a WBC; such an approach can accomplish
expressive [4], forceful [32]], or dexterous [7] tasks. One may
also train a high-level policy to select reference trajectories
or a latent representation autonomously in place of the tele-
operator, using either learning from demonstration [7, [10] or
reinforcement learning [21, 24]. However, some tasks may not
be achievable by any choice of reference trajectory if they
require a motion outside the training distribution of the WBC.
It is challenging to formulate a generic pre-training scheme
for whole-body control that anticipates all kinds of tasks one
might want to perform for humanoids, motion capture datasets
can provide diverse feasible reference commands [23], but
for quadruped manipulators, pre-training commonly defaults
to tracking procedurally generated smooth trajectories within

the workspace [6].

To avoid the reliance on high-quality pre-training, another
possibility is to discard the explicit notion of reference tra-
jectories altogether and directly train end-to-end policies for
specific tasks such as fall recovery [25]], door opening [38]],
or soccer [L1, [15} [16]]. This enables the policy to learn
highly dynamic motions to optimize the task reward, but, in
practice, these motions can be hard to find due to fundamental
exploration challenges in RL. We address this challenge by
initializing the policy with pre-trained WBC weights and a
reference trajectory.

B. Overcoming the sim-to-real gap

Prior work proposed simulated athletic tasks as a benchmark
for learned whole-body control [42, 24]], though they left sim-
to-real transfer as future work. In contrast, other studies have
demonstrated sim-to-real transfer of athletic tasks on small
robots with transparent actuators [[L1} [15} [16]. Achieving sim-
to-real transfer for athletic behaviors on large robots with non-
ideal actuators is especially challenging because even minor
modeling discrepancies can lead to reward hacking. To address
this, we introduce UAN, which leverages real-world data to
bridge the sim-to-real gap.

DR is a common strategy to mitigate discrepancies between
simulation and reality [17, [L8]. In the field of dynamic legged



robots, common parameters to randomize include the propor-
tional and derivative gains of each joint, the stall torques,
the link masses and inertias, and terrain properties [18), [51].
Excessive DR can reduce peak performance if the policy
cannot identify key parameters of the environment necessary
to optimize its reward function. To overcome this challenge,
previous work employed teacher-student frameworks, where
a student policy learns to imitate an expert policy that has
access to privileged observations related to its environment
[6, (17, [18]. Alternatively, the policy may learn online system
identification directly from an observation history. Some policy
architectures (i.e., CNNs [20] and transformers [33]]) have been
shown to achieve in-context adaptation without relying on a
teacher-student distillation.

Accurate system identification can reduce reliance on DR by
mitigating the sim-to-real gap directly. Methods for identifying
inertial properties typically rely on least-squares estimation
[2]], including a notable approach that leverages insights about
the geometric structure of the robot’s dynamics to provide
robustness against local optima [19]. This method was applied
to identify the inertial parameters of the MIT Humanoid [39].
In our work, we rely on the inertial properties provided in the
manufacturer’s URDF file.

Actuator modeling methods traditionally rely on parameter-
ized physics models to capture effects such as static friction,
dynamic friction, and reflected inertia [8], the last of which can
be set through the “armature” setting in physics simulations
such as Isaac Sim [26] and MuJoCo [48]. This approach
can be insufficient for actuators with complex transmission
mechanisms. To address this, Hwangbo et al. [13] proposed
learning an actuator net, which is a neural network trained
to predict an actuator’s output torque from a history of
position and velocity errors. The actuator net was added to the
simulator during policy training to reduce the sim-to-real gap
in ANYmal’s series elastic actuators. Their approach, however,
relies on torque sensing, which is uncommon in consumer
robotic hardware. Schwendeman et al. [39] avoided reliance
on an output torque sensor when training an actuator net by
measuring the torques from current. However, this is only
accurate in low-reduction and low-torque-density actuators
which are efficiently backdriveable and have minimal reflected
inertia. In contrast, our approach, UAN, employs an actuator
net without relying on torque data. Instead, we train the
network to predict corrective torques for the simulator that
minimize the discrepancy between the simulated and real-
world transition dynamics.

When ground-truth labels are unavailable (i.e., the robot’s
actuators lack torque sensing), they can be discovered through
interaction to better match the real-world dynamics. For ex-
ample, Zeng et al. [S0] learned a residual model to better
predict the ballistic motions of objects, enabling a manipulator
to accurately throw them. Similarly, Gruenstein et al. [9]]
proposed learning residual actions for a simplified dynamics
model for a legged microbot so that it transits to the same
future states as a more complex dynamics model. In another
study, Sontakke et al. [45] proposed learning a corrective

external force policy to improve simulation accuracy for a
buoyancy assisted legged robot. Mentee Robotics has publicly
stated that they applied RL to train a delta action model
using real-world data to overcome the sim-to-real gap on
their humanoid, but the technical details of their approach
remain unpublished [35]. While we also apply RL to correct
our simulation model, we specifically target the sim-to-real
gap for the robot’s actuators with harmonic drives, which are
notably hard to model. This focus leverages the parts of the
simulator that are more accurate (i.e., rigid body mechanics) to
reduce overfitting and also avoids reliance on a motion capture
system.

VII. CONCLUSION

Legged manipulators promise enhanced strength and a
larger workspace by coordinating arms and legs. We proposed
a training pipeline that first pre-trains a whole-body controller
and then fine-tunes it using task rewards, while simultaneously
reducing the sim-to-real gap via our UAN. Our experimental
results on ball throwing, dumbbell lifting, and sled pulling
demonstrate the viability of this approach. Future work may
extend the sim-to-real calibration to additional subsystems
and incorporate structural integrity constraints directly in the
training. Future work may extend the real-to-sim calibration
to additional subsystems and incorporate structural integrity
constraints directly in the training.
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APPENDIX A
TRAINING DETAILS

The PPO hyperparameters across all tasks are provided in Table [[|
The ranges for domain randomization are provided in Table
Table m details the WBC reward components, while Table m shows
the reward function for UAN training.

APPENDIX B
TASK ENVIRONMENTS

The auxiliary rewards (and scales) for each task match those in
Table [[Il underneath the dashed line.

A. Ball Throwing

The ball throwing task has three separate task states:
throw-set-up, throw, and settle. The policy knows which
state it is in by observing its task embedding, which includes a one-
hot vector. Each state has a separate task reward for the desired
behavior, such that

throw-set-up

ball __ b
Tt - throwfsetfuprt

throw settle
+ benrouTy + bsettiert

where b; is 1 when the environment is in state ¢ and 0 otherwise.
The task reward for each state is
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The throw-set—up reward encourages an upright posture and
tracking a trajectory to bring back the arm for a throw, then
the throw reward is to maximize the ball’s forward and upward
velocities while minimizing its lateral velocity. The settle reward
encourages the robot to stand upright after throwing and avoid falling
over.

The environment transitions from throw-set-up to throw
after 2.5s in simulation time, and it transitions from throw to
settle at 3.5s. We set the ball’s state to an arbitrary position at
the start of the episode, and then we place it in the robot’s bucket
after 1.5s. If the robot drops the ball in the throw-set-up, the
environment terminates.

With this set up, we found that the policy would sometimes learn
to lean during the throw-set-up task and eventually fall over
unless it transitioned to the throw state. Thus, we modified the
environment so that the policy remains in the throw state with a
probability of 0.3. Similarly, we added a probability that the robot
enters the settle state on reset to help the policy learn to stay still
after executing the throw.

We found that the policy may repeat the throwing motion multiple
times during the throw state because it cannot sense whether it is
holding the 100 g ball through proprioception. Thus, we include a
timer in the task embedding that linearly increments from 0O to 1
over 1 second during only the throw state, else it is 0. The policy
can key into this timer to infer whether it has already thrown the ball.

B. Dumbbell Lifting

We separate the dumbbell lifting task into two states:
snatch-set-up and snatch. The task rewards for each state

are

)
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The reward during snatch-set-up encourages tracking a refer-
ence that guides the EE near the ground. The force smoothness term
penalizes the robot for suddenly slamming its EE into the ground.
The snatch task reward is to maximize the end-effector height. To
avoid damaging the robot’s arm, we added a reward term penalizes
deviations from the wrist’s nominal, straightened position.

We used a similar strategoy to the throwing task to ensure stable
transitions—the environment transitions from snatch-set-up to
snatch after 2.5s with a probability of 0.9. Without this addition,
the robot may fall over during an extended snatch-set—up state.

C. Sled Pulling

We model the sled as a virtual mass-spring-damper. When an
episode begins, the robot is at a distance [ from the sled. The pulling
force between the EE and the sled is defined as

1l 2 ;)2
FP' = max (1000 d— 12 — ‘d’ ,0) ,
2
A lateral force is applied on the sled based on the friction and mass:

sled pull
F = Fz + U Mgled 9,

The sled task also has two states, sled-set—-up and pull,
where the reward terms are

3
u 1 cm
P = 522: gexp (—2 pi,td — Dit ) ,
) (4,5,6)
pull cmd o o yaw 2
T =-5 Vgt Vz,t 5 (;yt 59t Z qi

where dy; and §67*" are deviations from the starting state.

The environment transitions from sled-set—-up to pull after
2.5s of simulation time with full probability. Every 7 seconds,
forward base velocity commands are sampled uniformly from O to
—1ms™' with a probability of 0.8. Otherwise, the policy is given a
command of 0 ms™'. We found that the sled policies tended to drift
excessively in the base-y and -yaw directions since the policy does
not observe the robot’s base position and orientation. Thus, when the
forward base velocity command is non-zero, we set the lateral and
yaw velocity commands as

v = —0.50yy, )
Wt = —0.5607™, (8)

to help guide the policy to pull the sled straight. On hardware, we
provide forward, lateral, and yaw velocity commands from a joystick.

APPENDIX C
UAN TRAIN & TEST FITS

Simulator rollouts of each system identification method on training
data and test data are provided in Figures [8] and 0]



Fig. 8: Comparison of system identification methods on open-loop rollouts of the training data.

HYPERPARAMETER UAN VALUE PRE-TRAIN VALUE FINE-TUNE VALUE
Di1SCOUNT FACTOR 0.995 0.99 0.99
GAE PARAMETER 0.95 0.95 0.95
ENTROPY COEFFICIENT 0.0 0.01 0.0
ACTOR LEARNING RATE ADAPTIVE ADAPTIVE ADAPTIVE
CRITIC LEARNING RATE 5.E-4 5.E-4 5.E-4
KL THRESHOLD 0.01 0.01 0.01
HoRI1ZON 96 24 24
NUMBER OF ENVIRONMENTS 4096 4096 4096
ACTOR MINIBATCH SIZE 98304 24576 24576
CRITIC MINIBATCH SI1ZE 393216 98304 98304
# OF MINI EPOCHS 5 5 5
OPTIMIZER ADAMW ADAMW ADAMW
WEIGHT DECAY 0.01 0.01 0.01
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TABLE II: WBC & Fine-tune Domain Randomization
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Fig. 9: Sim-to-real gap for a throwing trajectory unseen during training.
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REWARD COMPONENT TERM SCALE
EE POSE TRACKING S Lexp (=2 [pfFY — pil) 5.0
LINEAR VELOCITY TRACKING exp (—4 |[vsd, vgpd] — [vz,hvy,t”;) 2.0
ANGULAR VELOCITY TRACKING exp (—4 (wipd — wz,t)g) 1.0
GAIT YicrrrLrrRL) L~ i} 1P, < 0.043} -0.5
No SLIP Zie{FR,FL,RR,RL}{Ci} exp (—0.1 !UH;) -0.5
FOOT CLEARANCE Y icrrrLrraLy ™~ G} [P =Pl : -40.0
- MECHANICAL POWER ireeq)  -0.0001

ACTION SMOOTHNESS lae —ar—1]3 + 3 |ay — 2a,-1 + ar_|; -0.05
LINEAR VELOCITY Z vz 2.0
ANGULAR VELOCITY XY |[Wa,ts Wyl |2 -0.05
JOINT POSITIONS g™t — g, -0.25
COLLISION {|F™|2 > 0.1 OR ’Ft'eg z > 0.1} -5.0
JOINT POSITION LIMITS >, —min(gi,e — %", 0) + max(q;c — ¢}, 0) -10.0
CONTACT FORCE e (FRFLRR.RL) |Fi| -0.000004

TABLE III: WBC Rewards

REWARD COMPONENT TERM SCALE
JOINT PosITIONS (L1) g — g™ -1.5
JOINT POSITIONS (RELAXED) exp (—100 AR qiimﬁ) 4.0
JOINT POSITIONS (MODERATE)  exp (—300 lg;* — g;™ |§) 4.0
JOINT POSITIONS (STRICT) exp (—1000 lg;e — qjimji) 5.0
ACTION SMOOTHNESS exp (—0.5 |ay — a;—1]) 0.5

TABLE IV

: Unsupervised Actuator Net Rewards
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